<Back

Understanding Maximum Cable Lengths for 230V Final Circuits

Regulation 7.1(ii) of BS 7671 outlines the maximum allowable cable lengths for 230V final circuits to ensure compliance with voltage drop limits and safety standards. This regulation helps electricians design circuits that are both safe and efficient, taking into account factors like cable size, protective device rating, and installation methods.

Cover Image for Understanding Maximum Cable Lengths for 230V Final Circuits
OW London Electrician and Home Automation Engineers Team

OW London Electrician and Home Automation Engineers Team

Understanding Maximum Cable Lengths for 230V Final Circuits

Understanding the maximum cable length for a 230 V final circuit is crucial to ensure that the voltage drop remains within acceptable limits and that the circuit operates safely. Regulation 7.1(ii) of BS 7671 states:

"The maximum length of cables depends on the protective device rating, cable size, and installation method, while also considering factors like the presence of RCDs and the type of earthing system (TN-S or TN-C-S)."

This regulation helps electricians design circuits that are both safe and efficient, taking into account factors like cable size, protective device rating, and installation methods.

Example: Determining Maximum Cable Length for a 32A Ring Final Circuit

Scenario: Suppose you are installing a ring final circuit in a residential kitchen, protected by a 32A Type B circuit breaker (CB/RCBO). The cable size chosen is 2.5mm² for phase conductors and 1.5mm² for the protective conductor. The installation method is Method 100, which typically involves clipped direct to a surface.

Calculation:

  • Maximum Length: According to the table, for this configuration, the maximum cable length is 106 meters if the earth fault loop impedance (Ze) is 0.8 Ω (TN-S) or 0.35 Ω (TN-C-S).
  • RCD Consideration: If the circuit is protected by a 30 mA RCD, the full 106 meters can be utilized. If no RCD is present, and Ze is closer to the upper limit, you would need to re-evaluate based on the specific Zs values, which might restrict the maximum allowable length further.

Example: Calculating Cable Length for a Lighting Circuit

Scenario: You are wiring a lighting circuit in a hallway using a 6A Type C circuit breaker. The selected cable is 1.0mm², installed using Method 100 (clipped direct).

Calculation:

  • Maximum Length: The maximum cable length is 68 meters when considering a standard installation with an RCD. However, due to the higher inrush current of Type C breakers, the length may be limited by the earth fault loop impedance (Zs), especially if no RCD is present.
  • Practical Implication: If Ze is high, you may need to reduce the cable length to meet safety requirements or consider upgrading the cable size to maintain the required length.

Key Considerations

  • Voltage Drop: The maximum cable length is primarily limited by voltage drop (typically 5% for ring and radial circuits, 3% for lighting circuits).
  • Zs Limitations: Ensure that the earth fault loop impedance does not exceed the limits specified for the protective device, particularly in circuits without RCD protection.
  • Cable Size: Increasing the cable size can extend the permissible length, but also consider the practical aspects like installation difficulty and cost.
  • Installation Methods: Different installation methods (e.g., buried in insulation vs. clipped direct) can significantly affect the allowable cable length due to their impact on cable current-carrying capacity.

By following these guidelines and using Table 7.1(ii) correctly, you can design safe and effective electrical circuits that comply with BS 7671 standards.

Table 7.1(ii) Maximum cable length for a 230 V final circuit using 70 °C thermoplastic (PVC) insulated and sheathed flat cable

Rating (A) For-Different-Types-Of-Circuit(5 % 3 % voltage drop) Protective device Cable size (mm²) Allowed installation methods (NOTE 2) Maximum length (m) (NOTE 1) Maximum length (m) (NOTE 1) Maximum length (m) (NOTE 1) Maximum length (m) (NOTE 1)
RCD 30 mA TN-S No RCD TN-S RCD 30 mA TN-C-S No RCD TN-C-S
Ring final circuits (5 % voltage drop, load distributed)
30 BS 3036 2.5/1.5 100, 102, A, C 106 41zs 106 106
30 BS 3036 4.0/1.5 100, 102, A, 101, 103, C 171 48 171 138zs
32 cb/RCBO Type B 2.5/1.5 100, 102, A, C 106 96zs 106 106
32 cb/RCBO Type C 2.5/1.5 100, 102, A, C 106 NPzs 106 56zs
32 cb/RCBO Type D 2.5/1.5 100, 102, A, C 106 NPzs 106 NPzs
32 BS 88-2 (BS EN 60269-2) 2.5/1.5 100, 102, A, C 106vd 32zs 106vd 106vd
32 BS 88-2 (BS EN 60269-2) 4.0/1.5 100, 101, 102, 103, A, C 171 38zs 171vd 127zs
32 BS 88-3 2.5/1.5 100, 101, A, 102, 103, A, C 106vd 19ad 106 95zs
32 BS 88-3 4.0/1.5 100, 102, A, 101, 103, A, C 171 22zs 171 112zs
32 cb/RCBO Type B 4.0/1.5 100, 102, A, 101, 103, A, C 171vd 114zs 171vd 171vd
32 cb/RCBO Type C 4.0/1.5 100, 102, A, 101, 103, A, C 171vd NPzs 171vd 66zs
32 cb/RCBO Type D 4.0/1.5 100, 102, A, 101, 103, A, C 171vd NPzs 171vd NPzs
Lighting circuits (3 % voltage drop, load distributed)
5 BS 3036 1.0/1.0 100, 101, 102, 103, A, C 68 68 68 68
5 BS 3036 1.5/1.0 100, 101, 102, 103, A, C 106 106 106 106
5 BS 88-3 1.0/1.0 100, 101, 102, 103, A, C 68 68 68 68
5 BS 88-3 1.5/1.0 100, 101, 102, 103, A, C 106 106 106 106
6 cb/RCBO Type B 1.0/1.0 100, 101, 102, 103, A, C 68 68 68 65zs
6 cb/RCBO Type C 1.0/1.0 100, 101, 102, 103, A, C 68 68 68 23zs
6 cb/RCBO Type D 1.0/1.0 100, 101, 102, 103, A, C 68 68 68 23zs
6 BS 88-2 (BS EN 60269-2) 1.0/1.0 100, 101, 102, 103, A, C 68 68 68 68
6 cb/RCBO Type B 1.5/1.0 100, 101, 102, 103, A, C 106 106 106 78zs
6 cb/RCBO Type C 1.5/1.0 100, 101, 102, 103, A, C 106 106 106 28zs
6 cb/RCBO Type D 1.5/1.0 100, 101, 102, 103, A, C 106 106 106 28zs
6 BS 88-2 (BS EN 60269-2) 1.5/1.0 100, 101, 102, 103, A, C 106 106 106 106
10 cb/RCBO Type B 1.0/1.0 100, 101, 102, A, C 42vd 42vd 42vd 42vd
10 cb/RCBO Type C 1.0/1.0 100, 101, 102, A, C 42vd 32zs 42vd 32zs
10 cb/RCBO Type D 1.0/1.0 100, 101, 102, A, C 42vd 23zs 42vd 23zs
10 cb/RCBO Type B 1.5/1.0 100, 101, 102, A, C 65vd 65vd 65vd 65vd
10 cb/RCBO Type C 1.5/1.0 100, 101, 102, A, C 65vd 38zs 65vd 51zs
10 cb/RCBO Type D 1.5/1.0 100, 101, 102, A, C 65vd 28zs 65vd 41zs
10 BS 88-2 (BS EN 60269-2) 1.0/1.0 100, 101, 102, A, C 42 42 42 42
10 BS 88-2 (BS EN 60269-2) 1.5/1.0 100, 101, 102, A, C 65 65 65 65
16 cb/RCBO Type B 1.5/1.0 100, 102, C 34 34 34 34
16 cb/RCBO Type C 1.5/1.0 100, 102, C 34 15sc 34 28zs
16 cb/RCBO Type D 1.5/1.0 100, 102, C 34 NPad 34 9zs
16 cb/RCBO Type B 2.5/1.5 100, 101, 102, A, C 49 49 49 49
16 cb/RCBO Type C 2.5/1.5 100, 101, 102, A, C 49 24zs 49 44zs
16 cb/RCBO Type D 2.5/1.5 100, 101, 102, A, C 49 NPad 49 14zs
16 BS 88-2 (BS EN 60269-2) 1.5/1.0 100, 102, C 20 20 20 20
16 BS 88-2 (BS EN 60269-2) 2.5/1.5 100, 101, 102, A, C 49 49 49 49
16 BS 88-3 1.5/1.0 100, 102, C 34 34 34 34
16 BS 88-3 2.5/1.5 100, 101, 102, A, C 34 34 34 34
Radial final circuits (5 % voltage drop, terminal load)
5 BS 3036 1.0/1.0 100, 101, 102, 103, A, C 56 56 56 56
5 BS 88-3 1.0/1.0 100, 101, 102, 103, A, C 56 56 56 56
5 BS 3036 1.5/1.0 100, 101, 102, 103, A, C 88 88 88 88
5 BS 88-3 1.5/1.0 100, 101, 102, 103, A, C 88 88 88 88
6 cb/RCBO Type B 1.0/1.0 100, 101, 102, 103, A, C 56 56 56 56
6 cb/RCBO Type C 1.0/1.0 100, 101, 102, 103, A, C 56 56 56 23zs
6 cb/RCBO Type D 1.0/1.0 100, 101, 102, 103, A, C 56 56 56 33zs
6 BS 88-2 (BS EN 60269-2) 1.0/1.0 100, 101, 102, 103, A, C 56 56 56 56
6 BS 88-2 (BS EN 60269-2) 1.5/1.0 100, 101, 102, 103, A, C 88 88 88 88
6 cb/RCBO Type B 1.5/1.0 100, 101, 102, 103, A, C 88 88 88 78zs
6 cb/RCBO Type C 1.5/1.0 100, 101, 102, 103, A, C 88 88 88 28zs
6 cb/RCBO Type D 1.5/1.0 100, 101, 102, 103, A, C 88 88 88 40zs
10 cb/RCBO Type B 1.0/1.0 100, 101, 102, A, C 35 35 35 36
10 cb/RCBO Type C 1.0/1.0 100, 101, 102, A, C 35 31zs 35 36
10 cb/RCBO Type D 1.0/1.0 100, 101, 102, A, C 35 6zs 35 17zs
10 cb/RCBO Type B 1.5/1.0 100, 101, 102, 103, A, C 52 52 52 52
10 cb/RCBO Type C 1.5/1.0 100, 101, 102, 103, A, C 52 38zs 52 50zs
10 cb/RCBO Type D 1.5/1.0 100, 101, 102, 103, A, C 52 8zs 52 20zs
10 BS 88-2 (BS EN 60269-2) 1.0/1.0 100, 101, 102, 103, A, C 35 35 35 35
10 BS 88-2 (BS EN 60269-2) 1.5/1.0 100, 101, 102, 103, A, C 52 52 52 52
15 BS 3036 1.0/1.0 NP NP NP NP NP
15 BS 3036 1.5/1.0 NP NP NP NP NP
15 BS 3036 2.5/1.5 100, 102, C 47 47 47 47
15 BS 3036 4.0/1.5 100, 101, 102, A, C 76 76 76 76
16 cb/RCBO Type B 1.0/1.0 C 18 18 18 18
16 cb/RCBO Type C 1.0/1.0 C 18 13zs 18 13zs
16 cb/RCBO Type D 1.0/1.0 C 18 7 18 NPad
16 BS 88-2 (BS EN 60269-2) 1.5/1.0 100, 102, C 27 27 27 27
16 BS 88-2 (BS EN 60269-2) 2.5/1.5 100, 101, 102, A, C 45 45 45 45
16 BS 88-2 (BS EN 60269-2) 4.0/1.5 100, 101, 102, 103, A, C 74 74 74 74
16 BS 88-3 1.5/1.0 100, 102, C 27 27 27 27
16 BS 88-3 2.5/1.5 100, 101, 102, A, C 45 45 45 45
16 BS 88-3 4.0/1.5 100, 101, 102, 103, A, C 74 74 74 74
16 cb/RCBO Type B 1.5/1.0 100, 102, C 27 27 15zs 27
16 cb/RCBO Type C 1.5/1.0 100, 102, C 27 27 27 27
16 cb/RCBO Type D 1.5/1.0 100, 102, C 27 NPad 27 9zs
Radial final circuits (5 % voltage drop, terminal load) - Continued
16 cb/RCBO Type B 2.5/1.5 100, 101, 102, A, C 45 45 45 45
16 cb/RCBO Type C 2.5/1.5 100, 101, 102, A, C 45 24zs 45 43zs
16 cb/RCBO Type D 2.5/1.5 100, 101, 102, A, C 45 NPzs 45 14zs
16 cb/RCBO Type B 4.0/1.5 100, 101, 102, 103, A, C 69 32ad 69 69
16 cb/RCBO Type C 4.0/1.5 100, 101, 102, 103, A, C 69 16zs 54ad 36zs
16 cb/RCBO Type D 4.0/1.5 100, 101, 102, 103, A, C 69 NPzs 18ad 9zs
20 BS 3036 2.5/1.5 100, 101, 102, A, C NP NP NP NP
20 cb/RCBO Type B 2.5/1.5 100, 101, 102, A, C 42 42 42 42
20 cb/RCBO Type C 2.5/1.5 100, 101, 102, A, C 42 12zs 42 31zs
20 cb/RCBO Type D 2.5/1.5 100, 101, 102, A, C 42 NPzs 42 8zs
20 BS 3036 4.0/1.5 C, 100, 101, 102, A, C 69 43zs 73 66zs
20 cb/RCBO Type B 4.0/1.5 C, 100, 101, 102, A, C 69 69 69 69
20 cb/RCBO Type C 4.0/1.5 C, 100, 101, 102, A, C 69 14zs 69 36zs
20 cb/RCBO Type D 4.0/1.5 C, 100, 101, 102, A, C 69 NPzs 69 9zs
20 BS 3036 6.0/2.5 100, 101, 102, 103, A, C 105 69zs 105 105
20 cb/RCBO Type B 6.0/2.5 100, 101, 102, 103, A, C 105 107 105 105
20 cb/RCBO Type C 6.0/2.5 100, 101, 102, 103, A, C 105 23zs 105 58zs
20 cb/RCBO Type D 6.0/2.5 100, 101, 102, 103, A, C 105 NPzs 105 15zs
20 BS 88-2 (BS EN 60269-2) 2.5/1.5 100, 102, A, C 42 42 42 42
20 BS 88-2 (BS EN 60269-2) 4.0/1.5 100, 101, 102, A, C 69 43zs 69 66zs
20 BS 88-2 (BS EN 60269-2) 6.0/2.5 100, 101, 102, 103, A, C 105 69zs 105 105
20 BS 88-3 2.5/1.5 100, 102, A, C 42 42 42 42
20 BS 88-3 4.0/1.5 100, 101, 102, A, C 69 43zs 69 69zs
20 BS 88-3 6.0/2.5 100, 101, 102, 103, A, C 105 69zs 105 105
25 cb/RCBO Type B 2.5/1.5 C 33 33 33 33
25 cb/RCBO Type C 2.5/1.5 C 33 2zs 33 22zs
25 cb/RCBO Type D 2.5/1.5 C 33 NPzs 33 4zs
25 cb/RCBO Type B 4.0/1.5 100, 102, A, C 55 47zs 55 55
25 cb/RCBO Type C 4.0/1.5 100, 102, A, C 55 3zs 55 26sc
25 cb/RCBO Type D 4.0/1.5 100, 102, A, C 55 NPzs 55 4zs
25 cb/RCBO Type B 6.0/2.5 100, 101, 102, A, C 83 75zs 83 83
25 cb/RCBO Type C 6.0/2.5 100, 101, 102, A, C 83 5zs 83 43zs
25 cb/RCBO Type D 6.0/2.5 100, 101, 102, A, C 83 NPzs 83 7zs
25 BS 88-2 (BS EN 60269-2) 2.5/1.5 C 31 20zs 31 31
25 BS 88-2 (BS EN 60269-2) 4.0/1.5
32 cb/RCBO Type B 4.0/1.5 C 43 43 43 43
32 cb/RCBO Type C 4.0/1.5 C 43 28zs 43 43
32 cb/RCBO Type D 4.0/1.5 C 43 NPzs 43 NPzs
32 cb/RCBO Type B 6.0/2.5 100, 102, A, C 63 45zs 63 63
32 cb/RCBO Type C 6.0/2.5 100, 102, A, C 63 NPzs 63 26zs
32 cb/RCBO Type D 6.0/2.5 100, 102, A, C 63 NPzs 63 NPzs
32 cb/RCBO Type B 10.0/4.0 100, 101, 102, 103, A, C 105 74zs 105 105zs
32 cb/RCBO Type C 10.0/4.0 100, 101, 102, 103, A, C 105 NPzs 105 42zs
32 cb/RCBO Type D 10.0/4.0 100, 101, 102, 103, A, C 105 NPzs 105 NPsc
32 BS 88-2 (BS EN 60269-2) 4.0/1.5 C 43 9zs 43 31zs
32 BS 88-2 (BS EN 60269-2) 6.0/2.5 100, 102, A, C 63 15zs 63 50zs
32 BS 88-2 (BS EN 60269-2) 10.0/4.0 100, 101, 102, 103, A, C 105 24zs 105 82zs
32 BS 88-3 4.0/1.5 C 43 5zs 43 27zs
32 BS 88-3 6.0/2.5 100, 102, A, C 63 8zs 63 44zs
32 BS 88-3 10.0/4.0 100, 101, 102, 103, A, C 105 14zs 105 72zs
40 cb/RCBO Type B 6.0/2.5 C 46 23zs 46 46
40 cb/RCBO Type C 6.0/2.5 C 46 NPzs 46 15zs
40 cb/RCBO Type D 6.0/2.5 C 46 NPzs 46 NPzs
40 cb/RCBO Type B 10.0/4.0 100, 102, A, C 72 37zs 72 72
40 cb/RCBO Type C 10.0/4.0 100, 102, A, C 72 NPzs 72 25zs
40 cb/RCBO Type D 10.0/4.0 100, 102, A, C 72 NPzs 72 NPzs
40 cb/RCBO Type B 16.0/6.0 100, 101, 102, 103, A, C 118 57zs 118 118
40 cb/RCBO Type C 16.0/6.0 100, 101, 102, 103, A, C 118 NPzs 118 39zs
40 cb/RCBO Type D 16.0/6.0 100, 101, 102, 103, A, C 118 NPzs 118 NPad
40 BS 88-2 (BS EN 60269-2) 6.0/2.5 C 46 NPzs 46 32zs
40 BS 88-2 (BS EN 60269-2) 10.0/4.0 100, 102, A, C 72 NPzs 72 52zs
40 BS 88-2 (BS EN 60269-2) 16.0/6.0 100, 101, 102, 103, A, C 118 NPzs 118 79zs

NOTES to Table 7.1(ii):

Voltage drop is the limiting constraint on the circuit cable length unless marked as follows:

  • ad limited by the reduced CSA of the protective conductor (adiabatic limit);
  • ol Cable/device/load combination not allowed in any of the installation conditions;
  • zs limited by earth fault loop impedance Zs; and
  • sc limited by line-to-neutral loop impedance (short-circuit).

The allowed installation methods are listed, see Tables 7.1(iii) and 7.1(iv) for further description.

NP - Not Permitted, prohibiting factor as NOTE 1.

For application of RCDs and RCBOs, see 3.6.4.

These notes provide important guidance on the limitations and conditions for using the circuit cable lengths outlined in the table. Found in the On-Site Guide 18th Edition, pages 75-83. Author

Frequently Asked Questions

Q: How does cable size affect the maximum length of a circuit?

A: According to Regulation 7.1(ii) of BS 7671, the maximum cable length is influenced by the cable size, as larger cables can carry more current with less voltage drop. This means a larger cable size can allow for a longer circuit while staying within safe voltage drop limits.

Q: What installation methods are considered in determining maximum cable lengths?

A: Regulation 7.1(ii) includes several installation methods such as clipped direct (Method 100) or buried in insulation, which affect the maximum cable length due to differences in heat dissipation and current-carrying capacity. The allowed methods are detailed in Tables 7.1(iii) and 7.1(iv).

Q: Why is RCD protection important when determining cable lengths?

A: RCD protection is crucial because it affects the maximum cable length permissible under BS 7671. With RCD protection, circuits can be longer as the device provides additional safety against earth faults, thereby allowing for higher earth fault loop impedance (Zs) limits.

Q: What limitations might apply to certain circuit configurations?

A: Table 7.1(ii) includes several notes that outline limitations, such as restrictions due to earth fault loop impedance (Zs), line-to-neutral loop impedance (sc), or the reduced cross-sectional area (CSA) of the protective conductor (ad). These factors can prohibit the use of certain cable lengths or configurations.

Q: How do voltage drop considerations influence circuit design?

A: Voltage drop is the primary constraint on cable length as per Regulation 7.1(ii) in BS 7671. Typically, a 5% voltage drop is allowed for ring and radial circuits, while a 3% drop is the limit for lighting circuits. Ensuring that the circuit remains within these limits is critical for maintaining safe and efficient operation.

Become a Part of Our Expert Electrician Team

Joining our team is quick and straightforward. We're looking for skilled electricians eager to tackle new challenges and work on diverse projects. Our three-step process ensures you can start engaging with clients and projects as soon as possible. You’ll receive full support from our experienced team and gain access to a wide network of potential job opportunities.

Step 1: Give Us a Call

Talk directly with our team to learn about job opportunities and get your questions answered.

Call Now
Step 2: Sign Up

Complete our straightforward sign-up form to begin your application process.

Sign Up Here
Step 3: Receive Job Leads

After approval, get ready to receive job leads and start working with our clients.

Get Started